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The study of the excluded-volume effects on protein stability and reactions or the stability of colloidal
suspensions is an active area of research. Using hard-disk collisional dynamics we investigate whether the
presence of a crowding agent can induce a shape change from a nonspherical molecule to a spherical one. We
show the averaged density profiles and velocity field of hard-disk crowders with an interior noncircular convex
shape as a boundary condition. The density profile is not axially symmetric, consistent with other hard-
potential experiments with asymmetry. However, more interestingly, the averaged velocity field was found to
have a nonzero curl, implying a region of vorticity without a thermal gradient, advective field, or other
motivating potential. To explain the occurrence of the vortices, a theoretical model is provided based on
angular momentum of hard disks at contact. All these results, as well as difference in pressure along the axes,
support the fact that as the packing fraction of the crowder rises, increasing force is exerted on an asymmetric
molecule toward a symmetric one.
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I. INTRODUCTION

When considering the structural dynamics and functional-
ity of macromolecules, the effective volume of the surround-
ing environment is a critical factor. Conditions in typical
cellular environments are often filled with other molecules
whose size is on the same order as macromolecules. As the
environment gets crowded, the mutual impenetrability of the
particles gives rise to excluded-volume effects and has sig-
nificant consequences for protein stability and folding rate
�1–9�, chaperonin action �10�, and amyloid fibril formation
�11�. Crowded environments may also enhance the rate of
protein aggregation �12�. A comprehensive review of macro-
molecular crowding can be found in �13�.

Along this line, two recent experiments are the motivation
for the present work. The first is the single-molecule mea-
surement of the mechanical force required to unfold a protein
molecule �ubiquitin� using atomic force microscopy �AFM�.
It was found that at fixed pulling speeds the unfolding force
increased progressively as more crowders are added �14�.
Our model here assumes the globular protein is mainly
spherical in shape and when stretched under the AFM, ellip-
tic. Furthermore, while the protein molecules are under
stretch they are not free to move. Therefore, for simplicity
we consider the limiting case that the stretched protein is an
infinitely heavy hard ellipse which is stationary under colli-
sions with the crowder molecules. In this paper, we have
restricted ourselves to a two-dimensional system.

Another related experiment showed that a crowded envi-
ronment can induce shape change in protein molecules �Bor-
relia burgdorferi VIsE� from a nonspherical native structure
to a more compact non-native spherical structure �16�. Asso-
ciated with this shape change, the function of protein may
change as a result. An interesting question to ask is then: can
a nonspherical molecule experience an intramolecular attrac-
tion, somewhat similar to the role of surface tension, change

its shape into a spherical one due to the presence of crow-
ders? An objective of the present article is to try to answer
this question by studying the collision dynamics between
hard-disk crowders and a hard ellipse.

The effect caused by the addition of cosolutes observed in
these experiments is the result of the interplay of the entropic
effect of the macromolecule, cosolute, and water. Since the
cosolutes added are typically hydrophilic, their addition
causes an increase in the total packing fraction of the aque-
ous solution, leading to a stronger crowding effect �15�. Nev-
ertheless, a single-component system is still a useful tool to
elucidate the physical nature of the entropic excluded-
volume effect. Our work considers the dynamics of a large
heavy solute immersed in a bath of hard spheres to model
these observations of crowding-enhanced protein stability.

The first study of excluded-volume effects, also known as
the depletion force, was originally derived by Asakura and
Oosawa �AO� �17� for hard spheres. AO theory assumes that
the density of the crowders is uniform for all permissible
volumes and the excluded volume is simply the volume of
the offset shape. The offset for a single convex particle is
defined as the surface extended some distance normally from
the surface. The excluded volume modifies the partition
function by restricting the space available to the particles.
The closer two particles are, the more volume is available to
the remaining crowders and hence a stronger depletion force.
By simple geometric arguments, AO theory gives an attrac-
tive interaction for hard disks that scales monotonically with
the interparticle separation. Essentially this is the zeroth-
order term in integral equation theories based on statistical
mechanics. The true spatial distribution is dependent on pair-
wise correlations, which themselves are dependent on three-
point correlations, etc. To move beyond AO theory requires
detailed knowledge of these higher-order correlation func-
tions. The Ornstein-Zernike equation, an open equation
that gives the exact distribution function, can be solved
analytically under proper closure relations such as the
Percus-Yevick �PY� relation for hard spheres �18� and hard
ellipses �19�. The PY closure gives good results for low size
asymmetry and packing fractions, outside this domain it can*hoppe@drexel.edu
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lead to pathological results for the density profiles. An alter-
native closure relation, hypernetted-chain �HNC� �20� has
been shown to give results more consistent with numerical
simulations �21�.

This tendency of hard-disk or hard-sphere objects to feel
an interparticle entropic force has previously been observed
in physical experiments �22,23�, theoretical predictions
�24,25�, and computer simulations �26�. The impenetrability
of the molecules, a nonspecific steric repulsion, forms the
basis of this entropic force. The loss of entropy between the
two particles is overcome by the gain in the entropy of the
remaining particles.

An interesting effect resulting from the theory of deple-
tion force is the tendency for particles to move along sur-
faces of decreasing curvature for convex surfaces �and
equivalently, increasing curvature for concave surfaces�. The
depletion zone a crowder makes at contact is greater for a
flatter surface, hence the particle should, on average, feel a
force in this direction. Studies of various geometries using
integral theories �27,28� and density-functional theory
�29,30� have confirmed this fact. This has been experimen-
tally observed for colloidal particles that feel repulsion near a
sharp edge �31�. Manipulation of colloidal structures has an
obvious appeal, but typically these studies focus on the den-
sity profiles and not the resulting velocity patterns that arise
from the entropic interaction. In this paper we provide evi-
dence of the entropic flows arising from hard-potential sur-
faces.

If a crowder tends to move along regions of decreasing
depletion areas, one should observe a flow of entropic origin
surrounding curved surfaces. If we vary the geometry of a
fixed macromolecule, say from a circle to an ellipse, it is
possible to change these density profiles and resulting flows.
We investigate this effect by varying the shape of the ellipse
as well as the different packing fractions and the relative size
of the crowders.

In a biological system, water cannot be regarded as an
inert background �32�. The presence of a solute generates an
excluded volume not only for the other solutes but also for
water molecules. To exclusively investigate the entropic ex-
cluded volume effect, water molecules can also be modeled
as hard spheres. In a strict sense, “crowders” should be
treated as a multicomponent system �15�. However, consid-
ering water molecules explicitly in a multicomponent system
would greatly increase the complexity of the computation.
We shall therefore focus on the depletion effects of one-
component crowders on a nonspherical body in the present
study.

This paper covers the computational method first, detail-
ing the design parameters and the implementation of the dis-
crete molecular dynamics. This is followed by the results of
the simulations, along with a quantitative analysis on the
boundary condition itself. The final section outlines the im-
portance of the velocity fields along with their connections to
the original motivating experiments.

II. COMPUTER SIMULATIONS

A. Simulation design

In the present work, we examine the flow of hard disks
around a hard ellipse fixed at the origin. The entire simula-

tion is done using discrete molecular dynamics �DMD� as
each potential collision can be predicted analytically. Initially
the time of first collision for all disk pairs is found, along
with the interaction against the interior boundary condition.
This list is chronologically ordered and the simulation is in-
tegrated to the first collision. The collision is handled, con-
serving energy, and impact angle and the collisions for the
interacting disks are recalculated with the velocity vectors.

Calculating a collision between hard disks is trivial.
Given two velocity vectors, initial positions and radii of ra,
rb, the disks first intersect when the positions are exactly a
distance of ra+rb apart. The exact time of collision can be
reduced to a quadratic equation, whose discriminant is zero
when the disks do not collide.

The collision of a disk with any other closed surface is, in
general, a difficult problem to solve analytically. If the shape
is convex, then the disk can intersect with the surface at most
four times. The first point of collision can be found by setting
the discriminant to zero, corresponding to a multiplicity of
the roots, or identically the first point of collision. The colli-
sion can then be found by plugging this solution into the
general solution of the fourth-order intersection polynomial.
This collision can also be visualized as the first point of
intersection between a line and the offset of the convex
shape. If the offset has a simple form, the problem simplifies
greatly. For a disk, the offset is another disk, whose collision
is trivial. For an ellipse the offset shape is complicated, often
requiring an iterative solution. The problem of two translat-
ing, rotating ellipses can be solved however, by reducing the
problem to the roots of a simpler eighth-order polynomial
�33�.

B. Boundary conditions

Using a dimensionless unit of length L the system of in-
terest is enclosed in a two-dimensional square box centered
at the origin. The side length was 2L using periodic boundary
conditions. Each hard disk was given an initial velocity vec-
tor in a random direction whose magnitude was drawn from
a Gaussian distribution. The interior boundary condition was
an ellipse, whose offset was defined as the surface extended
normally a distance r. The ellipse defined with axes Ea, Eb
was parametrized as

Q� ��� = �Ea cos �

Eb sin �
� . �1�

The first point of contact made by a hard disk of radius r
with the ellipse is the intersection of its velocity ray with the
ellipse offset

Q� offset = Q� + rN̂ �2�

Where N̂ is the outward unit vector normal to the surface.
The parametric form for the offset shape is thus

Q� ��� = �Ea cos � + grEb cos �

Eb sin � + grEa sin �
� �3�

where g= ��Eb cos ��2+ �Ea sin ��2�−1/2.
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III. RESULTS

The crowders consisted of a fixed number N=50 of ho-
mogeneous hard disks whose radius varied according to
packing fraction values of �=0.10 to �=0.30 with fixed
aspect ratio of k�Ea /Eb. For comparison, cellular interiors
show approximately 20–30% volume occupation by macro-
molecules �34�.

Statistical averages of the velocity and density fields were
taken by dividing the system into 1502 square cells. Snap-
shots of the fields were taken after 1/5 of the total simulation
time to allow for an initial thermalizing of the system. The
resulting density patterns shown in Fig. 1 are complex, but
similar to other studies of hard solutes near boundary condi-
tions. As an example, consider in Fig. 2 the density distribu-
tions plotted along the major and minor axes. Each curve is
zero inside the depletion zone, then it exhibits characteristic
oscillations on the length scale of the crowder diameter. The
reason for this is well known, the crowder statistically pre-
fers to form shells around immobile barriers. It is also clear
from the earlier discussion that the density on-contact should
be larger for the minor �flatter� axis of the ellipse, as the
depletion force there is greater.

Interestingly, when we plot the time-averaged velocity
field near the hard ellipse the field exhibits four vortices.
Since the system has fourfold symmetry �up to a sign change
in the curl of the velocity field�, we show only a portion of
the upper quadrant of the velocity in Fig. 3. The velocity
field clearly exhibits a single vortex, one that remains stable
in both size and location for the duration of the simulation.
The net angular momentum of the system is still zero as each
vortex has a counter-rotating partner, but the distribution of
the momentum has been partitioned along the quadrant lines.
This is an initially surprising result, as such flows are usually
caused by a thermal gradient, advective field or other poten-
tial. The entropic flows observed here are completely the

result of treating the ellipse as a hard boundary �rather than a
free particle�, which serves to redistribute the angular mo-
mentum of the system. This is discussed further in next sec-
tion. The exterior periodic boundary conditions serve to en-
close the flow. It is unknown if the flows obtained are still
valid in an infinite bath �L→��. The deviation from unifor-
mity of both the density and velocity fields occurs whenever
k�1. As the aspect ratio approaches unity �k→1� the pattern
generation takes longer to develop implying that there are no
observed phase transitions.

Motivated by the time-averaged velocity contours which
seem to imply a compressing force on the ellipse along the x
axis and an expanding force along the y axis, an averaged
pressure was calculated by recording all momentum changes
of the crowder against the ellipse. The average pressure ratio,
a heuristic measure designed to measure the tendency of the
ellipse to deform, is

R � �
r,�p�C

1

k

�px sgn�rx�
�py sgn�ry�

�4�

where the sum extends over the set C of all recorded colli-
sions of the crowders against the ellipse, r, �p represent the
position and the change in momentum vectors over the du-
ration of the collision, respectively, with the subscripts indi-
cating the component along the indicated direction and sgn is
the sign function.

R is a positive function over both increasing aspect ratio
and crowder density as show in Fig. 4. Furthermore it shows
the scaling of R is roughly quadratic over an increase of the
aspect ratio. Values of R�1, more pressure against the major

FIG. 1. �Color online� Contours of averaged density profiles for
an aspect ratio k=2.0, packing fraction �=0.30, and relative crow-
der radius rc /L=0.04370. The density has been normalized such
that the bulk density is unity. Both the hard ellipse and an approxi-
mation of the depletion zone are shown schematically.

FIG. 2. �Color online� Generalized distribution function along
each elliptical axis for the parameters aspect ratio k=2.0, packing
fraction �=0.30, and relative crowder radius rc /L=0.04370. The
distribution function g�r�, is a measure of the average density at a
point, normalized to one at the bulk density. The position of the
function is to be taken from the origin along the specified axis, with
the distance in units of L. The blue �solid� and black �dashed�
curves denote the values along the minor and major axis respec-
tively. The density on-contact is significantly greater at the minor
axis of the ellipse. The curves exhibit characteristic oscillations at
precisely the crowder diameter.
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axis, suggest a return to a spherical shape. The results ob-
tained show that the presence of crowders near a fixed
aspherical molecule is not the favored state, one that be-
comes increasingly unfavorable in both crowded conditions
and aspect ratio.

IV. THEORETICAL ANALYSIS

As a first approximation, we consider an ideal crowder
whose initial distribution is constant at � and velocities are
drawn from a Boltzmann distribution with temperature T.
Under a hard potential the angle of impact at the point of
collision along the tangent surface is conserved. When a
crowder particle impacts the boundary of the fixed ellipse the
resulting trajectory conserves energy but not momentum. We

define N̂��� and T̂��� to be the normal and tangent unit
vectors from the parametrization of the ellipse

N̂��� = g�Eb cos �

Ea sin �
� , �5�

T̂��� = g� Ea sin �

− Eb cos �
� . �6�

The incoming and outgoing velocities v� , v�� for are related
by

v�� = v� − 2�v� · N̂����N̂��� . �7�

We can calculate the average angular momentum change for
a given � by rotating the incident velocity from 0° to 180°
with respect to the tangent. In two dimensions, the cross
product of any two vectors A� , B� becomes a scalar quantity
�= �A� �B� �ẑ=AxBy −BxAy. We can define the scalar change of
angular momentum with respect to the origin at the point
Q� ��� along the ellipse with incident velocity v�

FIG. 3. �Color online� Time-
averaged velocity vectors in the
upper right quadrant of the simu-
lation for different parameters
�shown on chart�. For comparison
of vector magnitudes the largest
arrow in the lower right graph cor-
responds to a velocity that is 6.4
and 11.8% of the average and me-
dian respectively of the initial ve-
locity distribution. The general
magnitude of the vectors is highly
dependent on the aspect ratio, and
disappears completely for a circle
�k=1�. Both the hard ellipse and
an approximation of the depletion
zone are shown schematically.

FIG. 4. �Color online� Plot of the pressure ratio R as a function
of the aspect ratio k for various values of fixed packing fraction �.
Each point on the graph represents a complete simulation with dif-
ferent parameters. The values of the fixed packing fraction include
�= �0.10,0.15,0.20,0.25,0.30�. A quadratic best fit curve shown
for each value of � with the bottom curve corresponding
to �=0.10 and the other curves following sequentially. Note that
each curve starts at R=1.00 regardless of � since the aspect ratio
starts at k=1.0.
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���v� ,�� = � f − �i

= �Q� ��� � �v� − 2�v� · N̂����N̂�����ẑ − �Q� ��� � v��ẑ.

�8�

Assuming the crowder is uniformly incident from all
angles, the average change in angular momentum at a given
point along the ellipse can be found by direct integration of
an incoming unit velocity vector

	�L���
 =
1

�
�

0

�

���R�	�T̂,��d	

=
1

�

− 2�Ea
2 − Eb

2�cos � sin �

�Eb
2 cos2 � − Ea

2 cos2 � + Ea
2

. �9�

Where 	 is the incident angle with respect to the tangent
point of contact at �, and R�	� is the rotation matrix

R�	� = �cos 	 − sin 	

sin 	 cos 	
� . �10�

Lacking further information on the � dependence of the
velocity distribution we assume that this distribution is the
same at all points. As such, integration over a range of ve-
locities drawn from a Boltzmann distribution at temperature
T would scale the expression by a constant factor. As ex-
pected, the expression reduces to 	�L���
=0 for circles. For
aspect ratios where k�1, we see in Fig. 5 that there are four
regions of nonzero 	�L���
 separated by the symmetries of
the ellipse. If the crowder particles are allowed to interact,
regions of alternating 	�L���
 indicate the potential to de-
velop counter-rotating flows in each quadrant.

This approximation suffers from several drawbacks;
implicit assumption that the density is constant, that all im-
pact angles 	 has an equal probability, and the point-size
radius of the crowders. However, this simplified calculation
does suggest the fact that vortex flow generation and the
nonconservation of angular momentum of the system are
related.

V. DISCUSSION

Molecular dynamics simulations on the microscopic level
have long been shown to exhibit behaviors on the macro-
scopic scale �35�. In continuous systems where the flow is
obstructed, the nonlinear advective term �v� ·�� �v� in the
Navier-Stokes equation will convert linear momentum into
angular momentum �36�. With a high enough Reynolds num-
ber, laminar flow around the obstruction becomes unstable
and creates pairs of counter-rotating vortices. Theoretical
calculations for flow past a sharp-edge plate predict some
vortex formation at any nonzero Reynolds number �37�. The
fact that vortices exist for any aspect ratio other than unity in
our simulation agrees with these results, the difference here
is that our system lacks any initial thermal, velocity, or den-
sity gradients.

The findings have important implications for all hard-
potential models with curvature in the boundary conditions.
Related to the original AFM experiment �14�, the assumption
that the protein has an elliptical shape leads naturally to the
questions addressed in our experiment. Namely, does the ad-
dition of crowders induce shape changes for a fixed non-
spherical molecule? The pressure ratio observed suggested
that a return to a spherical shape, one that increased with
both ellipticity and packing fraction. This effect is consistent
with experimental observations �14,16� which show the ten-
dency of macromolecules to return to a spherical shape at
progressively higher packing fractions. In the context of the
AFM experiment, our simulations agree that the presence of
crowders led to a greater unfolding force required.

For the simulations of protein folding and unfolding pro-
cesses, models of Brownian dynamics are often used. The
equivalence of Brownian and hard-disk dynamics has been
previously investigated in the literature �38,39�. In a hard-
potential simulation all particles maintain an infinite memory
of their previous trajectories. Contrast this with the Langevin
dynamics which include a viscous damping term along with
a random component. In these dynamics the particles main-
tain only a partial memory of their previous trajectories. In
the current simulation, reducing the memory of the particles
�by including a viscous drag and random force component�
reduces the effect the elliptical boundary condition has on
the surrounding environment. In the extreme case of Brown-
ian motion, the density profiles extend only as far as the
Brownian steps themselves.

The point of the above observation is to highlight a cru-
cial difference between hard-sphere simulations with and
without memory. The distinction may be irrelevant for a rar-
efied hard-sphere gas such as argon, but may play a role in
the crowded molecular environment. While the role of
memory �or lack thereof� in biological simulations is impor-

FIG. 5. Plot of 	�L���
 for various aspect ratios as a function of
the elliptical parameter �. With area fixed at EaEb�=1, aspect ra-
tios are plotted from k=Ea /Eb=1 to k=2 in increments of 1/3. The
dashed lines indicate the two curves k=1, 5/3, with the flat line
corresponding to the circle.
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tant, we feel that the conclusions drawn from these simula-
tions are still applicable. To the extent that DMD and Brown-
ian dynamics are equivalent, our result can be used to
explain both the AFM and shape change experiments.
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